Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.417
Filtrar
1.
Exp Gerontol ; 189: 112401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490286

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disorder associated with human aging. Chronic inflammation is supposed to be an important contributor to ARHL. Yet, the underlying mechanisms of developing cochlear inflammation are still not well understood. In this study, we found that the inflammation, endoplasmic reticulum (ER) stress and necroptosis signalings are activated in the cochlea of aged C57BL/6 mice. ER stress activator tunicamycin (TM) induced necroptosis in cochlear HEI-OC1 cells and cochlear explants, while necroptosis inhibitors protected cochlear cells from ER stress-induced cell death. The antioxidants inhibited necroptosis and protected HEI-OC1 cells from TM insults. Necroptotic HEI-OC1 cells promoted the activation of the co-cultured macrophages via Myd88 signaling. Moreover, necroptosis inhibitor protected from TM-induced hearing loss, and inhibited inflammation in C57BL/6 mice. These findings suggest that ER stress-induced necroptosis promotes cochlear inflammation and hearing loss. Targeting necroptosis serves as a potential approach for the treatment of cochlear inflammation and ARHL.


Assuntos
Necroptose , Presbiacusia , Camundongos , Animais , Humanos , Idoso , Camundongos Endogâmicos C57BL , Cóclea/metabolismo , Estresse do Retículo Endoplasmático/fisiologia
2.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498576

RESUMO

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Assuntos
Actinas , Perda Auditiva de Alta Frequência , Animais , Camundongos , Actinas/genética , Actinas/metabolismo , Cóclea/metabolismo , Forminas/genética , Estudo de Associação Genômica Ampla , Audição , Camundongos Knockout , Polimerização
3.
PLoS One ; 19(3): e0298529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483863

RESUMO

Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 µmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 µmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3ß to decrease GSK3 activity, all of which exert antioxidant effects.


Assuntos
Gentamicinas , Glucosídeos , Ototoxicidade , Ratos , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Ciliadas Auditivas , Cóclea/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , RNA Mensageiro/metabolismo
4.
Hear Res ; 445: 108996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547565

RESUMO

Acute noise-induced loss of synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) has been documented in several strains of mice, but the extent of post-exposure recovery reportedly varies dramatically. If such inter-strain heterogeneity is real, it could be exploited to probe molecular pathways mediating neural remodeling in the adult cochlea. Here, we compared synaptopathy repair in CBA/CaJ vs. C57BL/6J, which are at opposite ends of the reported recovery spectrum. We evaluated C57BL/6J mice 0 h, 24 h, 2 wks or 8 wks after exposure for 2 h to octave-band noise (8-16 kHz) at either 90, 94 or 98 dB SPL, to compare with analogous post-exposure results in CBA/CaJ at 98 or 101 dB. We counted pre- and post-synaptic puncta in immunostained cochleas, using machine learning to classify paired (GluA2 and CtBP2) vs. orphan (CtBP2 only) puncta, and batch-processing to quantify immunostaining intensity. At 98 dB, both strains show ongoing loss of ribbons and synapses between 0 and 24 h, followed by partial recovery, however the extent and degree of these changes were greater in C57BL/6J. Much of the synaptic recovery is due to transient reduction in GluA2 intensity in synaptopathic regions. In contrast, CtBP2 intensity showed only transient increases (at 2 wks). Neurofilament staining revealed transient extension of ANF terminals in C57BL/6J, but not in CBA/CaJ, peaking at 24 h and reverting by 2 wks. Thus, although interstrain differences in synapse recovery are dominated by reversible changes in GluA2 receptor levels, the neurite extension seen in C57BL/6J suggests a qualitative difference in regenerative capacity.


Assuntos
Perda Auditiva Provocada por Ruído , Camundongos , Animais , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Endogâmicos C57BL , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos Endogâmicos CBA , Cóclea/metabolismo , Sinapses/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473985

RESUMO

In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology. Low-spontaneous-rate auditory nerve fibers typically connect on the modiolar side of the inner hair cell, while high-spontaneous-rate fibers are typically found on the pillar side. In aging and noise-damaged ears, this fine-tuned balance between auditory nerve fiber populations can be disrupted and the functional consequences are currently unclear. Here, using immunofluorescent labeling of presynaptic ribbons and postsynaptic glutamate receptor patches, we investigated changes in synaptic morphology at three different tonotopic locations along the cochlea of aging gerbils compared to those of young adults. Quiet-aged gerbils showed about 20% loss of afferent ribbon synapses. While the loss was random at apical, low-frequency cochlear locations, at the basal, high-frequency location it almost exclusively affected the modiolar-located synapses. The subtle differences in volumes of pre- and postsynaptic elements located on the inner hair cell's modiolar versus pillar side were unaffected by age. This is consistent with known physiology and suggests a predominant, age-related loss in the low-spontaneous-rate auditory nerve population in the cochlear base, but not the apex.


Assuntos
Cóclea , Sinapses , Animais , Gerbillinae , Cóclea/metabolismo , Sinapses/metabolismo , Nervo Coclear/metabolismo , Células Ciliadas Auditivas Internas/metabolismo
6.
Gene Expr Patterns ; 51: 119356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432189

RESUMO

It can be observed from aminoglycoside-induced hair cell damage that the cochlea basal turn is more susceptible to trauma than the apex. Drug-induced hearing loss is closely related to oxidative damage. The basilar membrane directly exposed to these ototoxic drugs exhibits differences in damage, indicating that there is an inherent difference in the sensitivity to oxidative damage from the apex to the base of the cochlea. It has been reported that the morphology and characteristics of the cochlea vary from the apex to the base. Therefore, we investigated oxidative stress-related gene expression profiles in the apical, middle, and basal turns of the cochlea. The Oxidative Stress RT2 Profiler™ PCR Array revealed that three of the 84 genes (Mb, Mpo, and Ncf1) were upregulated in the middle turn compared to their level in the apical turn. Moreover, eight genes (Mb, Duox1, Ncf1, Ngb, Fmo2, Gpx3, Mpo, and Gstk1) were upregulated in the basal turn compared to their level in the apical turn. The qPCR verification data were similar to that of the PCR Array. We found that MPO was expressed in the rat cochlea and protected against gentamicin-induced hair cell death. This study summarized the data for the gradient of expression of oxidative stress-related genes in the cochlea and found potential candidate targets for prevention of ototoxic deafness, which may provide new insights for cochlear pathology.


Assuntos
Cóclea , Estresse Oxidativo , Ratos , Animais , Cóclea/metabolismo , Cóclea/patologia , Perfilação da Expressão Gênica , Morte Celular , Transcriptoma
7.
Sci Rep ; 14(1): 3038, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321040

RESUMO

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.


Assuntos
Orelha Interna , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Camundongos , Estria Vascular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cóclea/metabolismo , Orelha Interna/metabolismo , Camundongos Transgênicos , Mamíferos/metabolismo
8.
Hear Res ; 443: 108962, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295585

RESUMO

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Assuntos
Cóclea , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Nestina/genética , Nestina/metabolismo , Sáculo e Utrículo/metabolismo , Vestíbulo do Labirinto/metabolismo
9.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38176908

RESUMO

Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.


Assuntos
Orelha Interna , Rampa do Tímpano , Animais , Camundongos , Cóclea/metabolismo , Ducto Coclear , Mamíferos , Gânglio Espiral da Cóclea , Fatores de Transcrição/metabolismo
10.
Hear Res ; 442: 108950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218017

RESUMO

Countless therapeutic antibodies are currently available for the treatment of a broad range of diseases. Some target molecules of therapeutic antibodies are involved in the pathogenesis of sensorineural hearing loss (SNHL), suggesting that SNHL may be a novel target for monoclonal antibody (mAb) therapy. When considering mAb therapy for SNHL, understanding of the pharmacokinetics of mAbs after local application into the middle ear is crucial. To reveal the fundamental characteristics of mAb pharmacokinetics following local application into the middle ear of guinea pigs, we performed pharmacokinetic analyses of mouse monoclonal antibodies to FLAG-tag (FLAG-mAbs), which have no specific binding sites in the middle and inner ear. FLAG-mAbs were rapidly transferred from the middle ear to the cochlear fluid, indicating high permeability of the round window membrane to mAbs. FLAG-mAbs were eliminated from the cochlear fluid 3 h after application, similar to small molecules. Whole-body autoradiography and quantitative assessments of cerebrospinal fluid and serum demonstrated that the biodistribution of FLAG-mAbs was limited to the middle and inner ear. Altogether, the pharmacokinetics of mAbs are similar to those of small molecules when locally applied into the middle ear, suggesting the necessity of drug delivery systems for appropriate mAb delivery to the cochlear fluid after local application into the middle ear.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Camundongos , Cobaias , Animais , Anticorpos Monoclonais/metabolismo , Distribuição Tecidual , Orelha Interna/metabolismo , Cóclea/metabolismo , Orelha Média , Janela da Cóclea/metabolismo , Perda Auditiva Neurossensorial/metabolismo
11.
Mol Biotechnol ; 66(2): 321-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37145220

RESUMO

To observe the expression changes of P2 protein in cochlear spiral ganglion cells before and after noise injury, and to explore the relationship between the changes of purinergic receptors in spiral ganglion cells and noise-induced hearing loss, so that the signal transduction of purinergic receptors can be used to treat SNHL The target point provides a theoretical basis. The experimental animals were randomly divided into normal and experimental groups. The experimental group was given 120 dB white noise continuous exposure for 10 days and 3 h a day. The auditory brainstem response was measured before and after the noise exposure. After the noise exposure, the two groups of animals were collected. Do immunofluorescence staining, western blot, fluorescence real-time quantitative PCR to observe the expression of P2 protein. The average hearing threshold of the animals in the experimental group increased to 38.75 ± 6.44 dB SPL after 7 days of noise exposure, and the high-frequency hearing loss was lower and severe; the average hearing threshold increased to 54.38 ± 6.80 dB SPL after 10 days of noise exposure, and the hearing loss at 4 k Hz was relatively high. Light; Frozen sections of cochlear spiral ganglion cells and staining of isolated spiral ganglion cells found that P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 proteins were all expressed in cochlear spiral ganglion cells before noise exposure. Among them, P2X3 expression increased and P2X4, the down-regulation of P2Y2 expression was statistically significant (P < 0.05); Western blot and real-time quantitative PCR detection results showed that the expression of P2X3 was significantly increased after noise exposure than before noise exposure (P < 0.05), and P2X4 and P2Y2 were expressed after noise exposure The amount was significantly lower than before noise exposure (P < 0.05). (Figure. 4). After noise exposure, the expression of P2 protein is upregulated or downregulated. By affecting the Ca2+ cycle, the transmission of sound signals to the auditory center is blocked, which provides a theoretical basis for the signal transduction of purinergic receptors to become a target for the treatment of SNHL.


Assuntos
Perda Auditiva Provocada por Ruído , Gânglio Espiral da Cóclea , Cobaias , Animais , Gânglio Espiral da Cóclea/metabolismo , Cóclea/metabolismo , Ruído/efeitos adversos , Perda Auditiva Provocada por Ruído/metabolismo , Receptores Purinérgicos/metabolismo
12.
Neurosci Bull ; 40(2): 255-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37391607

RESUMO

Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.


Assuntos
Imunidade Inata , Macrófagos , Humanos , Cóclea/metabolismo , Cóclea/patologia , Inflamação/metabolismo , Mitocôndrias
13.
Matrix Biol ; 125: 40-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070832

RESUMO

The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.


Assuntos
Surdez , Audição , Humanos , Audição/genética , Cóclea/metabolismo , Surdez/genética , Surdez/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
14.
Gene Ther ; 31(3-4): 154-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097651

RESUMO

The adeno-associated virus (AAV) gene therapy has been widely applied to mouse models for deafness. But, AAVs could transduce non-targeted organs after inner ear delivery due to their low cell-type specificity. This study compares transgene expression and biodistribution of AAV1, AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB after round window membrane (RWM) injection in neonatal mice. The highest virus concentration was detected in the injected cochlea. AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB transduced both inner hair cells (IHCs) and outer hair cells (OHCs) with high efficiency, while AAV1 transduced IHCs with high efficiency but OHCs with low efficiency. All AAV subtypes finitely transduced contralateral inner ear, brain, heart, and liver compared with the injected cochlea. In most brain regions, the enhanced green fluorescent protein (eGFP) expression of AAV1 and AAV2 was lower than that of other four subtypes. We suggested the cochlear aqueduct might be one of routes for vectors instantaneously infiltrating into the brain from the cochlea through a dye tracking test. In summary, our results provide available data for further investigating the biodistribution of vectors through local inner ear injection and afford a reference for selecting AAV serotypes for gene therapy toward deafness.


Assuntos
Surdez , Vetores Genéticos , Animais , Camundongos , Distribuição Tecidual , Vetores Genéticos/genética , Cóclea/metabolismo , Terapia Genética/métodos , Surdez/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Transdução Genética
15.
Hear Res ; 441: 108916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103445

RESUMO

Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Cobaias , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Ciliadas Auditivas/patologia , Epitélio/metabolismo , Cóclea/metabolismo , Neomicina
16.
Neurosci Lett ; 818: 137571, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013120

RESUMO

High intensity noise exposure leads to a permanent shift in auditory thresholds (PTS), affecting both peripheral (cochlear) tissue and the central auditory system. Studies have shown that a noise-induced hearing loss results in significant cell loss in several auditory structures. Degeneration can be demonstrated within hours after noise exposure, particularly in the lower auditory pathway, and continues to progress over days and weeks following the trauma. However, there is limited knowledge about the effects of recurring acoustic trauma. Repeated noise exposure has been demonstrated to increase neuroplasticity and neural activity. Thus, the present study aimed to investigate the influence of a second noise exposure on the cytoarchitecture of key structures of the auditory pathway, including spiral ganglion neurons (SGN), the ventral and dorsal cochlear nucleus (VCN and DCN, respectively), and the inferior colliculus (IC). In the experiments, young adult normal hearing mice were exposed to noise once or twice (with the second trauma applied one week after the initial exposure) for 3 h, using broadband white noise (5 - 20 kHz) at 115 dB SPL. The cell densities in the investigated auditory structures significantly decreased in response to the initial noise exposure compared to unexposed control animals. These findings are consistent with earlier research, which demonstrated degeneration in the auditory pathway within the first week after acoustic trauma. Additionally, cell densities were significantly decreased after the second trauma, but this effect was only observed in the VCN, with no similar effects seen in the SGN, DCN, or IC. These results illustrate how repeated noise exposure influences the cytoarchitecture of the auditory system. It appears that an initial noise exposure primarily damages the lower auditory pathway, but surviving cellular structures may develop resistance to additional noise-induced injury.


Assuntos
Perda Auditiva Provocada por Ruído , Colículos Inferiores , Camundongos , Animais , Vias Auditivas , Perda Auditiva Provocada por Ruído/metabolismo , Ruído/efeitos adversos , Cóclea/metabolismo , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica
17.
Biochem Biophys Res Commun ; 693: 149396, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38118309

RESUMO

Zinc plays a vital role in our metabolism, encompassing antioxidant regulation, immune response, and auditory function. Several studies have reported that zinc levels correlate with hearing loss. We have previously demonstrated that the auditory brainstem response (ABR) threshold increased in mice fed a zinc-deficient diet. However, the effects of zinc deficiency on hearing were not fully elucidated. The present study investigated whether zinc deficiency affects hearing in association with neuronal components or cochlear structures. CBA/N mice were fed a normal or zinc-deficient diet for 8 weeks and assessed for ABR and distortion product otoacoustic emissions (DPOAE). The cochlear sections were stained with hematoxylin and eosin solution. Also, we observed the expression of synaptic ribbons, neurofilaments, and alpha-synuclein (α-Syn). The 8-week zinc-deficient diet mice had an elevated ABR threshold but no changed DPOAE threshold or cochlear structures. A reduced number of synaptic ribbons of inner hair cells (IHCs) and impaired efferent nerve fibers were observed in the zinc-deficient diet mice. The number of outer hair cells (OHCs) and expression of α-Syn remained unchanged. Our results suggest that zinc-mediated hearing loss is associated with the loss of neuronal components of IHCs.


Assuntos
Surdez , Perda Auditiva , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Camundongos Endogâmicos CBA , Cóclea/metabolismo , Sinapses/metabolismo , Surdez/metabolismo , Zinco/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Limiar Auditivo
18.
Neurosci Lett ; 820: 137592, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103631

RESUMO

Despite affecting over 1.5 billion people globally, hearing loss (HL) has been referred to as an "invisible disability", with noise exposure being a major causative factor. Accumulating evidence suggests that HL can induce cognitive impairment. However, relatively little is known about the effects of noise-induced hearing loss (NIHL) on social memory. This study aimed to further investigate the effect of NIHL on social behaviours in mice. We established a rodent model of NIHL using 4-week-old C57BL/6J mice who experienced narrow noise exposure at 116 dB for 3 h per day over two consecutive days. Hearing ability was subsequently evaluated through auditory brainstem response (ABR) testing, and potential changes in the morphology of cochlear hair cells were assessed using immunofluorescence. The sociability and social memory of the mice were evaluated using the three-chamber social interaction test. Noise exposure resulted in complete and persistent HL in C57BL/6J mice, accompanied by severe loss of cochlear hair cells. More importantly, social memory was impaired in adult NIHL mice, whereas their sociability remained intact, these changes were accompanied by a decrease in the protein levels of the inhibitory neuron marker glutamic acid decarboxylase 67 (GAD67) in the ventral hippocampus. This study is the first to confirm that long-term auditory deprivation from HL induced by noise exposure results in social memory deficits in mice without altering their sociability.


Assuntos
Perda Auditiva Provocada por Ruído , Humanos , Adulto , Animais , Camundongos , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Endogâmicos C57BL , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Neurotransmissores/farmacologia , Limiar Auditivo/fisiologia , Cóclea/metabolismo
19.
Neurotoxicology ; 100: 85-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101458

RESUMO

Cobalt is widely used in the medical industry, mainly including cobalt alloy joint implants and cobalt-chromium porcelain crowns. However, unexplained ototoxicity and neurotoxicity often occur in the clinical use of cobalt agents at present, which limits the development of the cobalt industry. In this study, based on the clinical problem of cobalt ototoxicity, we first conducted an extensive search and collation of related theories, and on this basis, prepared an HEI-OC1 cell model and basilar membrane organotypic cultures after cobalt treatment. We used immunofluorescence staining, western blot, CCK8, and si-RNA to investigate the mechanism of cobalt ototoxicity, to discover its potential therapeutic targets. After comparing the reactive oxygen species, mitochondrial transmembrane potential, apoptosis-related protein expression, and cell viability of different treatment groups, the following conclusions were drawn: cobalt causes oxidative stress in the inner ear, which leads to apoptosis of inner ear cells; inhibition of oxidative stress and apoptosis can alleviate the damage of cobalt on inner ear cells; and the Dicer protein plays a role in the mechanism of inner ear damage and is a potential target for the treatment of cobalt-induced inner ear damage. Taken together, these results suggest that cobalt-induced ototoxicity triggered by oxidative stress activates a cascade of apoptotic events where cCaspase-3 decreases Dicer levels and amplifies this apoptotic pathway. It may be possible to prevent and treat cobalt ototoxicity by targeting this mechanism.


Assuntos
Cobalto , Ototoxicidade , Apoptose , Cisplatino , Cobalto/toxicidade , Cóclea/metabolismo , Sistemas Microfisiológicos , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Linhagem Celular
20.
Sci Rep ; 13(1): 21494, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057582

RESUMO

Fatty acid-binding protein 7 (FABP7) is vital for uptake and trafficking of fatty acids in the nervous system. To investigate the involvement of FABP7 in noise-induced hearing loss (NIHL) pathogenesis, we used Fabp7 knockout (KO) mice generated via CRISPR/Cas9 in the C57BL/6 background. Initial auditory brainstem response (ABR) measurements were conducted at 9 weeks, followed by noise exposure at 10 weeks. Subsequent ABRs were performed 24 h later, with final measurements at 12 weeks. Inner ears were harvested 24 h after noise exposure for RNA sequencing and metabolic analyses. We found no significant differences in initial ABR measurements, but Fabp7 KO mice showed significantly lower thresholds in the final ABR measurements. Hair cell survival was also enhanced in Fabp7 KO mice. RNA sequencing revealed that genes associated with the electron transport chain were upregulated or less impaired in Fabp7 KO mice. Metabolomic analysis revealed various alterations, including decreased glutamate and aspartate in Fabp7 KO mice. In conclusion, FABP7 deficiency mitigates cochlear damage following noise exposure. This protective effect was supported by the changes in gene expression of the electron transport chain, and in several metabolites, including excitotoxic neurotransmitters. Our study highlights the potential therapeutic significance of targeting FABP7 in NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Audição , Camundongos , Animais , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Audição/fisiologia , Ruído/efeitos adversos , Perda Auditiva Provocada por Ruído/genética , Cóclea/metabolismo , Camundongos Knockout , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...